50 research outputs found

    Genetic Evidence for a Mitochondriate Ancestry in the ‘Amitochondriate’ Flagellate Trimastix pyriformis

    Get PDF
    Most modern eukaryotes diverged from a common ancestor that contained the α-proteobacterial endosymbiont that gave rise to mitochondria. The ‘amitochondriate’ anaerobic protist parasites that have been studied to date, such as Giardia and Trichomonas harbor mitochondrion-related organelles, such as mitosomes or hydrogenosomes. Yet there is one remaining group of mitochondrion-lacking flagellates known as the Preaxostyla that could represent a primitive ‘pre-mitochondrial’ lineage of eukaryotes. To test this hypothesis, we conducted an expressed sequence tag (EST) survey on the preaxostylid flagellate Trimastix pyriformis, a poorly-studied free-living anaerobe. Among the ESTs we detected 19 proteins that, in other eukaryotes, typically function in mitochondria, hydrogenosomes or mitosomes, 12 of which are found exclusively within these organelles. Interestingly, one of the proteins, aconitase, functions in the tricarboxylic acid cycle typical of aerobic mitochondria, whereas others, such as pyruvate:ferredoxin oxidoreductase and [FeFe] hydrogenase, are characteristic of anaerobic hydrogenosomes. Since Trimastix retains genetic evidence of a mitochondriate ancestry, we can now say definitively that all known living eukaryote lineages descend from a common ancestor that had mitochondria

    Live Imaging of Mitosomes and Hydrogenosomes by HaloTag Technology

    Get PDF
    Hydrogenosomes and mitosomes represent remarkable mitochondrial adaptations in the anaerobic parasitic protists such as Trichomonas vaginalis and Giardia intestinalis, respectively. In order to provide a tool to study these organelles in the live cells, the HaloTag was fused to G. intestinalis IscU and T. vaginalis frataxin and expressed in the mitosomes and hydrogenosomes, respectively. The incubation of the parasites with the fluorescent Halo-ligand resulted in highly specific organellar labeling, allowing live imaging of the organelles. With the array of available ligands the HaloTag technology offers a new tool to study the dynamics of mitochondria-related compartments as well as other cellular components in these intriguing unicellular eukaryotes

    Protistan Diversity in the Arctic: A Case of Paleoclimate Shaping Modern Biodiversity?

    Get PDF
    The impact of climate on biodiversity is indisputable. Climate changes over geological time must have significantly influenced the evolution of biodiversity, ultimately leading to its present pattern. Here we consider the paleoclimate data record, inferring that present-day hot and cold environments should contain, respectively, the largest and the smallest diversity of ancestral lineages of microbial eukaryotes.We investigate this hypothesis by analyzing an original dataset of 18S rRNA gene sequences from Western Greenland in the Arctic, and data from the existing literature on 18S rRNA gene diversity in hydrothermal vent, temperate sediments, and anoxic water column communities. Unexpectedly, the community from the cold environment emerged as one of the richest observed to date in protistan species, and most diverse in ancestral lineages.This pattern is consistent with natural selection sweeps on aerobic non-psychrophilic microbial eukaryotes repeatedly caused by low temperatures and global anoxia of snowball Earth conditions. It implies that cold refuges persisted through the periods of greenhouse conditions, which agrees with some, although not all, current views on the extent of the past global cooling and warming events. We therefore identify cold environments as promising targets for microbial discovery

    Molecular Phylogeny and Evolution of Parabasalia with Improved Taxon Sampling and New Protein Markers of Actin and Elongation Factor-1α

    Get PDF
    BACKGROUND: Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxa-in particular determining the root-is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. PRINCIPAL FINDINGS: Actin and elongation factor-1α genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. CONCLUSIONS/SIGNIFICANCE: We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in these structures. Therefore, systematics based solely on morphology does not reflect the evolutionary history of parabasalids

    Shedding Light on Vampires: The Phylogeny of Vampyrellid Amoebae Revisited

    Get PDF
    With the advent of molecular phylogenetic techniques the polyphyly of naked filose amoebae has been proven. They are interspersed in several supergroups of eukaryotes and most of them already found their place within the tree of life. Although the ‘vampire amoebae’ have attracted interest since the middle of the 19th century, the phylogenetic position and even the monophyly of this traditional group are still uncertain. In this study clonal co-cultures of eight algivorous vampyrellid amoebae and the respective food algae were established. Culture material was characterized morphologically and a molecular phylogeny was inferred using SSU rDNA sequence comparisons. We found that the limnetic, algivorous vampyrellid amoebae investigated in this study belong to a major clade within the Endomyxa Cavalier-Smith, 2002 (Cercozoa), grouping together with a few soil-dwelling taxa. They split into two robust clades, one containing species of the genus Vampyrella Cienkowski, 1865, the other containing the genus Leptophrys Hertwig & Lesser, 1874, together with terrestrial members. Supported by morphological data these clades are designated as the two families Vampyrellidae Zopf, 1885, and Leptophryidae fam. nov. Furthermore the order Vampyrellida West, 1901 was revised and now corresponds to the major vampyrellid clade within the Endomyxa, comprising the Vampyrellidae and Leptophryidae as well as several environmental sequences. In the light of the presented phylogenetic analyses morphological and ecological aspects, the feeding strategy and nutritional specialization within the vampyrellid amoebae are discussed

    EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata

    Get PDF
    BACKGROUND: Classification of eukaryotes provides a fundamental phylogenetic framework for ecological, medical, and industrial research. In recent years eukaryotes have been classified into six major supergroups: Amoebozoa, Archaeplastida, Chromalveolata, Excavata, Opisthokonta, and Rhizaria. According to this supergroup classification, Archaeplastida and Chromalveolata each arose from a single plastid-generating endosymbiotic event involving a cyanobacterium (Archaeplastida) or red alga (Chromalveolata). Although the plastids within members of the Archaeplastida and Chromalveolata share some features, no nucleocytoplasmic synapomorphies supporting these supergroups are currently known. METHODOLOGY/PRINCIPAL FINDINGS: This study was designed to test the validity of the Archaeplastida and Chromalveolata through the analysis of nucleus-encoded eukaryotic translation elongation factor 2 (EEF2) and cytosolic heat-shock protein of 70 kDa (HSP70) sequences generated from the glaucophyte Cyanophora paradoxa, the cryptophytes Goniomonas truncata and Guillardia theta, the katablepharid Leucocryptos marina, the rhizarian Thaumatomonas sp. and the green alga Mesostigma viride. The HSP70 phylogeny was largely unresolved except for certain well-established groups. In contrast, EEF2 phylogeny recovered many well-established eukaryotic groups and, most interestingly, revealed a well-supported clade composed of cryptophytes, katablepharids, haptophytes, rhodophytes, and Viridiplantae (green algae and land plants). This clade is further supported by the presence of a two amino acid signature within EEF2, which appears to have arisen from amino acid replacement before the common origin of these eukaryotic groups. CONCLUSIONS/SIGNIFICANCE: Our EEF2 analysis strongly refutes the monophyly of the Archaeplastida and the Chromalveolata, adding to a growing body of evidence that limits the utility of these supergroups. In view of EEF2 phylogeny and other morphological evidence, we discuss the possibility of an alternative eukaryotic supergroup

    Evolution and pathology in Chagas disease: a review

    Full text link
    corecore